Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Howard A. Shallard-Brown,^a* Christopher C. Harding,^a David J. Watkin,^a Raquel Soengas,^b Ulla P. Skytte^c and George W. J. Fleet^b

^aChemical Crystallography Laboratory, Chemical Research Laboratory, Oxford University, Mansfield Road, Oxford OX1 3TA, England, ^bDepartment of Organic Chemistry, Chemical Research Laboratory, Oxford University, Mansfield Road, Oxford OX1 3TA, England, and ^cArla Foods Ingredients, Viby J, Denmark

Correspondence e-mail: howard.shallard-brown@lmh.ox.ac.uk

Key indicators

Single-crystal X-ray study T = 190 KMean σ (C–C) = 0.003 Å R factor = 0.033 wR factor = 0.073 Data-to-parameter ratio = 10.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2,3:5,6-Di-O-isopropylidene-2-C-hydroxymethyl-D-talono-1,4-lactone

The title diacetonide, $C_{13}H_{20}O_7$, readily available in quantity from D-tagatose, is likely to be a useful carbohydrate starting material. The current structure analysis resolves any ambiguities arising from the synthetic route over the configuration at the new chiral centre and the size of the lactone ring, but otherwise shows no unusual features. Received 13 October 2004 Accepted 25 October 2004 Online 30 October 2004

Comment

Sugars provide the largest group of readily available chiral building blocks and bio-active scaffolds (Lichtenthaler & Peters, 2004; Bols, 1996). Although little studied since initial investigations by Kiliani (Kiliani, 1885, 1928; Gorin & Perlin, 1958), the reaction of ketoses with aqueous potassium cyanide easily produces a mixture of branched sugar lactones under aqueous conditions. The reaction of the lactones produced from D-fructose and L-sorbose with acetone in the presence of acid gives rise to readily crystallized diacetonides likely to furnish a new family of carbohydrate-derived chiral building blocks with branched carbon chains (Hotchkiss et al., 2004). The full exploitation of this technology requires access to a wide range of ketoses; in the past, only D-fructose and L-sorbose have been readily available. However, the impetus for the development of low calorie sweeteners has led to an extensive biotechnology which provides almost any hexose by combinations of microbial oxidations and enzyme-catalysed epimerizations (Granstrom et al., 2004). Thus D-tagatose (2) (see scheme), previously considered a rare sugar, is prepared on an industrial scale for use in soft drinks and ready-to-eat cereals (Skytte, 2002).

The Kiliani reaction of cyanide with D-tagatose (2) gave an excellent yield of different amounts of two lactones. Extraction of this mixture with acetone in the presence of sulfuric acid gave a mixture of diacetonides; the major product (1) was easily isolated as a crystalline material. The current structure analysis of (1) resolves any ambiguities arising from the synthetic route over the configuration at the new chiral centre and the size of the lactone ring. The diacetonide (1) is likely to be a useful starting material for the preparation of a number of branched sugar mimics.

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

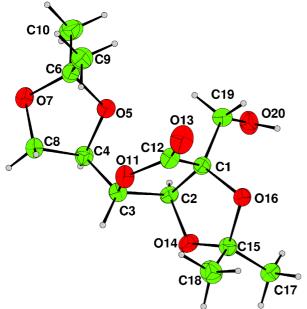
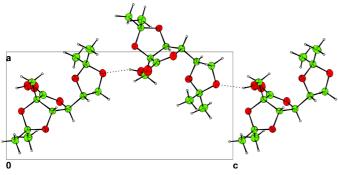



Figure 1

The title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are of arbitrary radii.

Figure 2

Packing diagram viewed along the b axis. Molecules are linked into ribbons by hydrogen bonds (dashed lines).

The crystal and molecular structures of (1) show no unusual features. As expected for sugar derivatives, hydrogen bonding occurs between molecules, in this case, linking molecules into ribbons parallel to the c axis.

Experimental

The title compound was crystallized from diethyl ether by inward diffusion of n-hexane to yield plate-like colourless crystals. These did not cleave well, leading to the use of a large crystal. The multi-scan technique was used to correct for changes in illuminated volume.

Crystal data

$C_{13}H_{20}O_7$	Mo $K\alpha$ radiation
$M_r = 288.30$	Cell parameters from 1577
Orthorhombic, $P2_12_12_1$	reflections
a = 7.8609 (3) Å	$\theta = 5-27^{\circ}$
b = 10.7470 (4) Å	$\mu = 0.11 \text{ mm}^{-1}$
c = 16.5516 (6) Å	$T = 190 { m K}$
V = 1398.30 (9) Å ³	Block, colourless
Z = 4	$0.65 \times 0.25 \times 0.15 \text{ mm}$
$D_x = 1.369 \text{ Mg m}^{-3}$	

Data collection

181 parameters

Nonius KappaCCD diffractometer ω scans Absorption correction: multi-scan (<i>DENZO/SCALEPACK</i> ; Otwinowski & Minor, 1997) $T_{min} = 0.97, T_{max} = 0.98$ 2981 measured reflections	1804 independent reflections 1544 reflections with $I > 2\sigma(I)$ $R_{int} = 0.013$ $\theta_{max} = 27.5^{\circ}$ $h = -10 \rightarrow 10$ $k = -13 \rightarrow 13$ $l = -21 \rightarrow 21$
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.074$ S = 0.92 1803 reflections	H-atom parameters constrained $w = 1/[\sigma^2(F) + 0.028 + 0.385P],$ where $P = [\max(F_o^2, 0) + 2F_c^2]/3$ $(\Delta/\sigma)_{\max} < 0.001$ $\Delta\rho_{\max} = 0.26 \text{ e} \text{ Å}^{-3}$

All H atoms were observed in a difference electron-density map. The hydroxyl H atom was placed as found and the others were placed geometrically with isotropic displacement parameters related to the $U_{\rm eq}$ values of the adjacent atoms. The H-atom positions and $U_{\rm iso}$ values were regularized by refinement with slack restraints and the refinement completed with H-atom riding constraints [C-H = 0.98 ± 0.02 Å; $U_{iso}(H) = U_{eq}(C) \pm 0.002$ Å²; O-H no restraints]. In the absence of significant anomalous scattering effects, Friedel pairs were merged.

 $\Delta \rho_{\min} = -0.23 \text{ e} \text{ Å}^2$

Data collection: COLLECT (Nonius, 1997); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Financial support (to RS) provided through the European Community's Human Potential Programme under contract HPRN-CT-2002-00173 is gratefully acknowledged. A generous gift of D-tagatose from Arla Foods allowed this work to be performed.

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Bols, M. (1996). Carbohydrate Building Blocks. New York: Wiley.
- Gorin, P. A. J. & Perlin, A. S. (1958). Can. J. Chem. 36, 480-485.
- Granstrom, T. B., Takata, G., Tokuda, M. & Izumori, K. (2004). J. Biosci. Bioeng. 97, 89-94.
- Hotchkiss, D., Soengas, R., Simone, M. I., Van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45. In the press.
- Kiliani, H. (1885). Ber. Dtsch Chem. Ges. 18, 3066-3074.
- Kiliani, H. (1928). Ber. Dtsch Chem. Ges. 61, 1155-1169.
- Lichtenthaler, F. W. & Peters, S.(2004). Compt. Rend. Chim. 7, 65-90.
- Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.
- Skytte, U. P. (2002). Cereal Foods World, 47, 224-227.

Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.